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A Fast, Powerful Method for Detecting Identity by Descent

Brian L. Browning1,3,* and Sharon R. Browning2,3,*

We present amethod, fastIBD, for finding tracts of identity by descent (IBD) between pairs of individuals. FastIBD can be applied to thou-

sands of samples across genome-wide SNP data and is significantly more powerful for finding short tracts of IBD than existing methods

for finding IBD tracts in such data.We show that fastIBD can detect facets of population structure that are not revealed by othermethods.

In the Wellcome Trust Case Control Consortium bipolar disorder case-control data, we find a genome-wide excess of IBD in case-case

pairs of individuals compared to control-control pairs. We show that this excess can be explained by the geographical clustering of cases.

We also show that it is possible to use fastIBD to generate highly accurate estimates of genome-wide IBD sharing between pairs of distant

relatives. This is useful for estimation of relationship and for adjusting for relatedness in association studies. FastIBD is incorporated in

the freely available Beagle software package.
Introduction

Haplotypes are identical by descent if they are identical

and inherited from a common ancestor. Tracts of identity

by descent (IBD) are broken up by recombination during

meiosis, so expected length of IBD depends on the number

of generations since the common ancestor at the locus. If

the common ancestor lived a great many generations ago

(ancient IBD), the individuals share very short tracts of

genetic material. In the sense of ancient IBD, identical

single nucleotide polymorphism (SNP) alleles are often

assumed to be identical by descent; it is assumed that there

is no recurrent mutation. At the other extreme, in families,

individuals who have IBD typically share very long tracts

(>10 cM), and IBD is only defined with respect to docu-

mented common ancestry. Familial IBD can be detected

with linkage programs.1,2 Recent IBD3 is IBD between indi-

viduals of possibly undocumented relationship, and it

results from common ancestry within approximately the

past 30 generations. Using high-density SNP genotype

data, one can detect the majority of recent IBD tracts

with lengths greater than 2 cM in data from north-western

Europeans.3

IBD is fundamental to genetic mapping. Association

mapping methods rely on linkage disequilibrium (LD),

which is due to ancient IBD between unrelated individuals.

Pedigree-based linkage methods use familial IBD. Recent

IBD can be used for population-based linkage analysis in

founder populations.4–6 Detection of close relationships

by means of familial and recent IBD (Witherspoon et al.,

abstract 367, ASHG annual meeting, November 5, 2010

and Han and Abney, abstract 1105, ASHG annual meeting,

November 4, 2010) is useful for correcting the variance

of association statistics.7–11 Ancient IBD is also useful in

detecting and measuring population structure.4,12,13

There are several existing methods for detecting IBD.

Some methods are based on detecting long segments of
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identity by state (IBS) (Nelson, S., et al. abstract 1530,

ASHG annual meeting, October 11, 2006. and refer-

ences5,14–16). Other methods calculate probabilities of

IBD.3,4,6 Some probability-based methods require that

SNPs be in linkage equilibrium,4 which requires prior thin-

ning of SNPs and thus reduces power. Beagle allows SNPs to

be in LD by modeling haplotype frequencies. We previ-

ously developed an IBD detection method (Beagle IBD)

and showed that it had higher power than several other

methods when we controlled for the false-positive rate.3

However, Beagle IBD is computationally intensive and

cannot be applied to all pairs of individuals genome-wide

in large-scale genome-wide association studies.

We present an alternative IBD detection method,

fastIBD, which accounts for haplotype frequencies and

uncertain haplotype phase while enabling fast computa-

tion on genome-wide SNP data. The fastIBD method is

more than 1000 times faster than the existing Beagle IBD

method, and this increased speed permits it to be applied

to genome-wide data on thousands of samples. One can

use the fastIBD method to find IBD directly. Alternatively,

one can combine the fastIBD method with the probabi-

listic Beagle IBD method by using fastIBD as a filter to

find pairs of individuals who are likely to have IBD in

a genomic region and then applying the full IBD proba-

bility calculation on those pairs.

The fastIBD method is based on estimating frequencies

of shared haplotypes. Haplotype frequency is critical

because a shared common haplotype is unlikely to reflect

recent IBD, whereas a shared haplotype that is very

rare is likely to be identical by descent. The fastIBD

method allows for uncertain haplotype phase by sampling

multiple realizations of haplotype phase given the data,

then allowing for some switching between alternative

phasings; there is, however, a switch penalty to prevent

excessive switching. The extent of haplotype sharing is

measured by a score that is the frequency of the shared
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haplotype modified by the penalties assessed at each

switch between alternate phasings. Thus, a small score

(close to zero) for a pair indicates that the two individuals

share a low-frequency haplotype and are thus likely to be

identical by descent. We use sampled haplotypes with

a sliding marker window, as is done in GERMLINE,5

which permits rapid computation. A critical difference

between our method and GERMLINE is that our method

is based on shared haplotype frequency rather than shared

haplotype length.
Figure 1. Merging of Shared Haplotype Tracts
Four pairs of haplotypes have been sampled from individuals
1 and 2. Two shared haplotype tracts have been found (denoted
by patterned regions). The two tracts are merged into a single
shared haplotype tract.
Material and Methods

The fastIBD algorithm starts by sampling a fixed number of haplo-

type pairs (four pairs by default) for each individual from the poste-

rior haplotype distribution. Each sampled haplotype corresponds

to a sequence of hidden Markov model (HMM) states. The fastIBD

algorithm searches for pairs of sampled haplotypes sharing the

same sequence of HMM states for a set of consecutive markers. If

the pair of sampled haplotypes belongs to two distinct individuals,

the shared haplotype tract is recorded. For each pair of individuals,

overlapping shared haplotype tracts are merged, and the merged

shared haplotype tract is a mosaic of pairs of sampled haplotypes

(see Figure 1). A fastIBD score is calculated for each merged tract,

and if the score is below a user-specified threshold, the tract is

printed to an output file. We now describe in detail the algorithm

for finding shared haplotype tracts, the calculation of fastIBD

scores for those tracts, and the algorithmicdetails that allow for effi-

cient computation. Pseudocode is available as supplemental data.

Shared Haplotype Tracts
A shared haplotype tract T consists of a pair of sampled haplotypes

(T.H1 and T.H2), a startingmarker index (T.start), an endingmarker

index (T.end), and a fastIBD score (T.score).We use the convention

that the starting marker index is inclusive and the ending marker

index is exclusive. When shared haplotype tracts are first discov-

ered, the fastIBD score is equal to the pairwise haplotype score

defined below for the two haplotypes in the marker interval.

However, after shared haplotype tracts are found, overlapping

shared haplotype tracts are merged, and the merging algorithm

defines a new fastIBD score for themerged tract. In general, the fas-

tIBD score roughly approximates the frequency of the shared

haplotype.

Pairwise Haplotype Scores
For any pair of haplotypes H1 and H2 and any interval of markers

m1 < m2, we define a pairwise haplotype score S(H1, H2, m1, m2).

The Beagle model defines a unique sequence of HMM states for

each haplotype. If both haplotypes have the same sequence of

HMM states in the marker interval, the pairwise haplotype score

is the haplotype frequency or, more precisely, the frequency of

the shared sequence of HMM states. As a consequence of the LD

model’s being a HMM, the frequency of a sequence of HMM states

sm, smþ1, ., smþk can be expressed as a product of state and tran-

sition probabilities:

Pðsm; smþ1;.; smþkÞ ¼ PðsmÞ
Yk

j¼1

P
�
smþj j smþj�1

�

In the preceding equation, there is a term corresponding to each
marker: P(sm) for marker m and P(smþj j smþj�1) for marker m þ j
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(j > 0). If the two haplotypes do not have the same HMM state

at one or more markers in the marker interval, one obtains the

pairwise haplotype score by replacing the corresponding state

P(sm) or transition probability P(smþj j smþj�1) with 100 at each

marker for which the two haplotypes have different HMM states.

This penalizes the pairwise haplotype score by inflating the esti-

mated shared haplotype frequency.

Merging Shared Haplotype Tracts
Two shared haplotype tracts T and U can be merged to create

a merged shared haplotype tract M if the pair of sampled haplo-

types in each tract corresponds to a single pair of individuals

and if either the marker intervals for the two shared haplotype

tracts overlap or the starting marker for one tract is the ending

marker for the other tract. When merging overlapping shared

haplotype tracts for a pair of individuals, we merge tracts with

the smallest starting marker indices first.

The marker interval for the merged tract is the union of the two

marker intervals. The fastIBD score of the merged tract is defined

to be less than or equal to the two component fastIBD scores.

For the purposes of further computation, we only need to keep

track of the haplotypes at the right end of the merged tract, so

the two notated haplotypes of the merged tract are the haplotypes

from the tract with the largest ending index. For example, if the

marker interval in shared haplotype tract T is a subset of the

marker interval in shared haplotype tract U, we say tract U covers

tract T, and we define the merged tract as M.H1 ¼ U.H1, M.H2 ¼
U.H2,M.start¼U.start,M.end¼U.end, andM.score¼min{T.score,

U.score}.

If shared haplotype tracts TandU can bemerged, and if one tract

does not cover the other tract, then either T.start % U.start and

T.end % U.end or U.start % T.start and U.end % T.end. If we

assume the former configuration, the merged tract haplotypes

areM.H1¼U.H1 andM.H2¼U.H2, themerged tractmarker interval

is M.start ¼ T.start, M.end ¼ U.end, and the merged-tract fastIBD

score M.score is the minimum of a left score and a right score.
11, 2011



The left score is defined as

T:score3minf1; ð1003 SðU:H1; U:H2; T:end; U :endÞÞg
The right score is defined as

minf1; ð1003T:score=SðT:H1; T :H2; U :start; T:endÞÞg3U:score

The left score is the left-tract fastIBD score multiplied by the

minimum of 1 and (100 3 the fastIBD score from the extra

markers contributed by the right tract). The right score is the

right-tract fastIBD score multiplied by the minimum of 1 and

(100 3 the fastIBD score from the extra markers contributed by

the left tract). The minimum function in the definition of left

and right scores ensures the merged tract score is equal to or

smaller than the fastIBD scores for the left and right shared haplo-

type tracts. The penalty term is needed to prevent the discovered

IBD tracts from switching arbitrarily often between an individual’s

haplotypes. Such switching would allow the algorithm to find

excessive numbers of false-positive IBD tracts. On the other

hand, it is important to allow the possibility of some switching

between haplotypes in a long IBD tract because phased haplotypes

do contain switch errors.17 We tried other penalty values (25 and

400) and found very little difference in performance in terms of

power and false-positive rates (results not shown).

Marker Windows
The algorithm reduces computer memory requirements by storing

only a windowofmarker data inmemory at any time. Thewindow

is a set of consecutive markers, and the window is moved down

the chromosome during the analysis. The window contains two

smaller windows of markers, which are adjacent. We refer to the

two smaller windows as the leading window and the trailing

window. The number of markers in each window is chosen on

the basis of properties of the Beagle HMM in the region (as

described below). This enables the number of markers in each

window to adapt to the local haplotypic structure as the windows

advance along the chromosome.

The fastIBD algorithmmoves this pair of smaller windows along

the chromosome. At the first step, only the leading window is

defined. At the next step, the old leading window becomes the

new trailing window, and the new leading window starts adjacent

to the new trailing window. This process is repeated along the

chromosome.

Suppose that the trailing window is frommarkersm0 (inclusive)

to m1 (exclusive) and that the leading window is from markers m1

(inclusive) to m2 (exclusive). We use the leading window to find

shared haplotype tracts from pairs of sampled haplotypes that

share the same sequence of HMM states in the window. For each

distinct sequence of HMM states in the leading window, all pairs

of sampledhaplotypes that have the sequence and that correspond

to distinct individuals are identified. Although the number of pairs

of samples grows quadratically with sample size, one can effi-

ciently identify the pairs of sampled haplotypes with identical

HMM states in the leading window by using a dictionary data

structure, as noted by Gusev et al.5 For each identified pair of

haplotypes, H1 and H2, that share the same sequence of HMM

states in the leading window, the beginning and ending markers

of the shared haplotype are determined as follows: First, we search

backward from the start of the leading window and find the

minimal marker m* such that the two sampled haplotypes

have the same sequence of HMM states for the markers from m*

(inclusive) to m2 (exclusive). Second, we search forward from the
The America
end of the leading window, m2, and find the marker m**, which

minimizes S(H1, H2, m*, m**) and satisfies S(H1, H2, m*, m) % 1

for all m* < m % m**. Note that we permit the shared haplotype

tract to contain markers beyond the leading window for which

the candidate pair of haplotypes have different HMM states if

including thesemarkerswillminimize the total pairwise haplotype

score. Once the starting and endingmarkersm* andm** are discov-

ered, we record a shared haploytpe tract for the pair of sampled

haplotypes. This shared haplotype tract starts with marker m*,

endswithmarkerm**, and has a fastIBD score of S(H1,H2,m*,m**).

After finding the shared haplotype tracts from the leading

window, we identify all pairs of individuals with shared haplotype

tracts, and for each pair of individuals, wemerge all covered shared

haplotype tracts with their covering tract.

Extending Shared Haplotype Tracts
After identifying and recording shared haplotypes tracts by using

the leading window, we next attempt to extend all previously

recorded shared haplotype tracts that end within the trailing

window. If a shared haplotype tract detected in the leading

window overlaps with the tract that ends in the trailing window,

we extend the tract that ends in the trailing window by merging

it with the tract detected in the leading window. Otherwise, if

a shared haplotype tract for a pair of haplotypes H1 and H2 ends

at markerm in the trailing window, we identify the pair of individ-

uals corresponding to the sampled haplotypes H1 and H2. For this

pair, we look among the sampled haplotypes for haplotypes that

have the same HMM state at marker m. If there is no pair of

sampled haplotypes with the same HMM state at marker m, then

the tract cannot be extended. For each pair of haplotypes (if

any) with the same HMM state at marker m, we calculate the pair-

wise haplotype score from marker m to the last marker for which

the two sampled haplotypes share the same HMM state for all

markers in the interval. We select the extending haplotype pair

with the minimal pairwise haplotype score and create a shared

haplotype tract that is merged with the original haplotype pair

ending at marker m. We repeat this process as long as there is

a shared haplotype tract that ends in the trailing window and

can be extended. If a shared haplotype tract terminates in the trail-

ing window and cannot be extended, we remove the shared haplo-

type tract, after first printing it to an output file if its fastIBD score

is less than the user-specified threshold.

Beagle Distance and Window Size
We use a model-based measure of distance along a chromosome

that we call Beagle distance. This distance is defined in terms of

the state and transition probabilities of the Beagle HMM model.

We use Beagle distance to determine the size of each marker

window (described below). Define tm as

tm ¼
X

s˛Sm

Pðs j $ÞPðsÞ;

where Sm is the set of HMM states at marker m, P(s) is the

probability of being in state s at marker m, and P(s j $) is the

unique, non-zero probability of transitioning to state s conditional

on being in a state at marker s � 1 that permits a transition to s. In

the BeagleHMM, transition probabilities for transitions into a state

(‘‘edge’’ in the terminology of Browning and Browning17) are

unique because all transitions to the state go through an interme-

diate node from which the transition probabilities are defined.

This property does not apply to HMMs in general, but it is
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Figure 2. Beagle Distance versus cM Distance
Calculated on the Four Genomic Regions Used
in the Power Study
Data are from the UK 1958 birth cohort and
HapMap CEU on Illumina 550K SNPs. Beagle
positions are the Beagle distance from the start
of the region. CentiMorgan (cM) positions are
estimates from HapMap. For each genomic
region, the correlation between the two measures
(r) and the slope of the least-squares regression
line fit to the data (slope) are given.
a convenient attribute of the Beagle HMM. The value tm is the

average transition probability into states at marker m.

We define the Beagle distance d(m� 1,m) betweenmarkerm� 1

and marker m to be �ln tm and the distance d(m1, m2) between

markers m1 and m2 (m1 < m2) to be the sum

dðm1; m2Þ ¼
X

m1<j%m2

�ln tj:

The negative logarithm transformation converts products of

probabilities to sums of non-negative distances. This definition of

Beagle distance assigns 0 distance between markers that are

completely correlated. Ifmarkersm� 1 andm are completely corre-

lated, the HMM state at marker m � 1 completely determines the

HMM state at marker m, and all non-zero transition probabilities

for transitions into states atmarkerm are equal to 1. Consequently,

if markers m � 1 and m are completely correlated, the distance

between the markers is d(m � 1, m) ¼ �ln 1 ¼ 0. It can be shown

that the smallest possible value of t for diallelic SNPs is 0.5, corre-

sponding to a maximum distance of 0.69 between adjacent SNPs.

Figure 2 shows the relationship between position defined by

Beagle distance and position defined by the usual cM genetic

distance (taken from HapMap18). The correlation between these

two measures is extremely high. Because the maximum Beagle

distance is constrained, large gaps in the markers (such as

a 1.1 cM gap at 28 cM in region 1A) do not correspond to large

jumps in the Beagle distance. This is not important for the

purposes of defining window size, for which we use Beagle

distance. We use Beagle distance rather than cM distance because

the Beagle distances are generated automatically rather than

requiring input by the user. Also, Beagle distance can adapt to

different relationships between LD and cM distance—for example,

African data will tend to have lower LD than European data, and

this will be represented in the Beagle distances.
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As a default criterion for window size, we use

a distance of 1.6 (approximately 0.2 cM in Euro-

pean data; see Figure 2). We chose this window

size empirically to achieve a reasonable balance

between computational efficiency and sensi-

tivity. Phasing errors increase with window

length, so the use of larger window sizes runs

the risk of missing detection of pairs of individ-

uals who share haplotypes IBD. On the other

hand, smaller windows are computationally inef-

ficient because too many shared haplotypes are

identified in the leading window.

FastIBD Computation
The process underlying a single fastIBD computa-

tional run involves phasing the data (using the
usual ten iterations of the phasing algorithm), sampling four pairs

of haplotypes per individual, creating a Beagle model from the

sampled haplotypes to determine the underlying HMM states

(used in detecting IBD), and finding the IBD tracts. When building

the Beagle model from the sampled haplotypes, we use a parsimo-

nious version of the Beagle model with a scale factor of 2.0 (as

compared with the default scale of 1.0 used in phasing or, at the

other extreme, the default scale of 4.0 used in haplotypic testing

with Beagle; see Browning and Browning for description of scale

factors19), which improves the power to detect IBD. In the results

shown,we repeat the whole process ten times (except where other-

wise noted),with different seeds for the randomnumber generator,

and we take theminimum score from the ten runs at each position

where IBD is found.
Results

Power and False Discovery Rates

To investigate power, we used artificial IBD data described

previously.3 In brief, we took phased HapMap Phase II CEU

(Utah residents with ancestry from northern and western

Europe) data18 and copied a segment of one individual’s

haplotype onto another individual to create artificial IBD

in 30 pairs of individuals. In order to have a large sample

size for building the haplotype frequency model, we added

approximately 1500 individuals from the UK 1958 birth

cohort20 genotyped on the Illumina 550K platform,

restricting attention to SNPs genotyped in both data sets.

We used the fastIBD method to find IBD between the

HapMap pairs in whom artificial IBD had been created.

We repeated the data creation and analysis for IBD tract



sizes of 1, 2, 3, 4, and 5 cM. To estimate power, we average

the proportion of artificial IBD that is detected by the

method over pairs of individuals and SNPmarkers. In other

words, power is the average proportion of an IBD tract that

is detected as identical by descent. We applied the fastIBD

method with various thresholds on the score. We also

applied three other methods: shared segment detection

from PLINK v1.07,4 GERMLINE v1.4,5 and Beagle IBD

v3.3. We used default settings for these programs as

much as possible. For PLINK, we first thinned the markers

according to suggestions in the PLINK documentation. We

ran PLINK both with default settings, which require IBD

segments to be at least 1 megabase and 100 SNPs long,

and with relaxed settings, which require IBD segments to

be at least 200 kb and 20 SNPs. For GERMLINE, we set

the minimum tract length to 0.5 cM, whereas the default

is 5 cM. This allows GERMLINE a chance to find some of

the small segments in the power comparison, but it would

not be a recommendable setting in general because it

would result in a high false-discovery rate. For Beagle

IBD, we used the new default setting of ibdscale ¼ 2.0,

introduced in version 3.3, which increases power over

the previous default setting of ibdscale¼ 1.0 used in results

reported previously.3

In order to investigate false-positive rates, we used

data constructed from the 1958 birth cohort chromosome

1 Illumina 550K data in such a way as to destroy any IBD

tracts of length 0.2 cM or greater. We accomplished this

by creating composite individuals, as described previ-

ously.3 The purpose of destroying IBD tracts is to avoid

including true-positive results in the false-positive rates.

(In contrast, in order to keep the power analysis as realistic

as possible, we did not attempt to destroy existing IBD

tracts in the power analysis.) We tested for IBD in these

data. For a given size of tract, we used all detected tracts

within 10% of this size (for example, tracts of detected

size 0.9–1.1 for 1 cM and size 1.8–2.2 for 2 cM) and

recorded the mean proportion of SNPs per pair of individ-

uals at which IBD is detected in tracts within this size

range. This is the false-positive rate for a given tract length.

Whereas the false-positive rate only measures the ability

of the method to control type I error (false detection of IBD

tracts), the false-discovery rate is a function of false-

positive rate, power, and the rate of true IBD tracts in the

data. Specifically, the false discovery rate is the proportion

of SNPs that are reported to be identical by descent but

that are not identical by descent within reported tracts of

a given length. In order to estimate this quantity, one

needs to have an estimate of the true rate, T, of IBD of esti-

mated length L. We estimated the value T by using the rate

of IBD detection by Beagle IBD in four regions in the 1958

birth cohort Illumina 550K data and the corresponding

false-positive and power rates from our previous analyses.3

We also need F, the per-SNP, per-pair false-positive estimate

described above, and P, the per-SNP, per-pair power esti-

mate described above. The formula for estimating the

false-discovery rate is (1 � T)F/[(1 � T)F þ TP]. To derive
The America
this formula, note that (1 � T) is the proportion of SNPs

that are not in an IBD tract of length L, F is the rate of esti-

mating such SNPs to be IBD, so that (1 � T)F is the rate at

which, per pair of individuals, SNPs that are not identical

by descent are incorrectly estimated to be identical by

descent (in a tract of estimated length L). Similarly, T is

the rate of SNPs that are in an IBD tract of length L, and

P is the rate at which such SNPs are estimated to be iden-

tical by descent, so that TP is the rate at which, per pair

of individuals, SNPs that are identical by descent in a tract

of length L are correctly estimated to be identical by

descent. The denominator then is the rate, per pair of indi-

viduals, at which SNPs are estimated to be identical by

descent (in a tract of length L).

Results are shown in Figure 3. We see that fastIBD and

Beagle IBD are very effective at finding IBD tracts of size

2 or 3 cM with both high power and low false-discovery

rate, whereas PLINK and GERMLINE have low power

to detect tracts of this size or a high false-discovery rate.

No method has very high power for finding tracts of size

1 cM, but fastIBD and Beagle IBD at least have a low

false-discovery rate for this size tract. For large tracts (4 or

5 cM), all methods do well. Overall, a fastIBD-score

threshold of 10�10 gives high power while keeping the

false-discovery rate close to zero, so we use this threshold

in all further analyses unless otherwise noted.

The fastIBD results described above, and those used in

the analyses below, are based on combined results of ten

independent runs of the method (the minimum score

over the ten runs at each position was used). The reason

for combining results from multiple runs is that single

runs canmiss tracts of IBD as a result of stochastic variation

in the estimated haplotypes. Figure 4 shows results from

combining one, three, or ten run(s). Using ten runs gives

significantly better results than using one run and some-

what better results than using three runs. Using five runs

gives results that fall approximately midway between

those for three and ten runs (data not shown). Thus,

combining results from three or five runs would be reason-

able if computing resources are limited.

Bipolar Analysis

We applied the fastIBDmethod to theWellcome Trust Case

Control Consortium (WTCCC) bipolar disorder data20

genotyped on the Affymetrix 500K platform. High geno-

type accuracy is critically important when detecting IBD,

so we re-called the SNP genotypes with BEAGLECALL,21

which incorporates LD to improve genotype call accuracy.

After quality control filtering, there were 1868 cases

and 2938 controls comprising individuals from the

UK 1958 birth cohort (58C) and from the UK Blood

Service (UKBS), and 459,983 autosomal SNPs. We found

an excess of IBD in case-case pairs compared to control-

control pairs in these data. Figure 5 shows that the excess

IBD is spread across the genome. IBD proportions tend to

drop at the ends of chromosomes because of the reduced

information there. Table 1 shows case and control IBD
n Journal of Human Genetics 88, 173–182, February 11, 2011 177
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Figure 3. False Discovery Rate versus Power
Results for the fastIBDmethod at five values of score threshold and for Beagle IBD, germline, and PLINKwith default and relaxed settings
for five sizes of IBD tract. Results for PLINK with relaxed settings are denoted by PLINK*.
proportions as well as average kinship coefficients

estimated with PLINK (–genome option). Overall, there

is approximately 10% excess IBD in cases relative to

controls.

The WTCCC data include the geographical origin of

each sample. Each individual is identified as originating

from one of 12 regions of the UK.We stratified our analysis

of IBD proportions by geographic region, and results are

shown in Table 1. The levels of average IBD sharing within

Wales and within Scotland are much higher than for other

regions. The differences between cohorts within Wales

could be due to population structure within Wales and

unequal sampling of the different subregions of Wales in

the three cohorts. In contrast, the other ten geographical
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(English) regions have lower average IBD proportions for

each of the cohorts. The bipolar disorder recruitment effort

included a large component from Cardiff, so that 21% of

the bipolar samples are from Wales, whereas only 5% are

fromWales for the 1958 birth cohort and UK Blood Service

cohorts (see Table 2). This bias seems to be driving the over-

all difference in IBD proportions between cases and

controls in the WTCCC study, although it is possible that

polygenic disease-susceptibility factors22 also play a role

in this difference.

We were interested in whether these geographic effects

on IBD proportions would be seen with other approaches

to population structure. We first looked at kinship coeffi-

cients estimated with PLINK’s –genome option after
0.15 0.20
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Figure 4. False-Discovery Rate versus Power for
the FastIBD Method: Combined Results from
Different Numbers of Runs
The results from ten runs are the same as those in
Figure 2. ‘‘Threshold’’ is the score threshold
applied to the fastIBD scores.
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Figure 5. FastIBD Average Proportions of Case-Case IBD Sharing and Control-Control IBD Sharing along the Genome for WTCCC
Bipolar Case-Control Data
The IBD proportion in cases (y axis on top panel) is the fraction of pairs, computed from all case-case pairs, that are estimated to be iden-
tical by descent at a given location in the genome. Similarly, the IBD proportion in controls (y axis in middle panel) is computed from all
control-control pairs. The difference in IBD proportions (y axis in lower panel) is the IBD proportion in cases minus IBD proportion in
controls. Dashed vertical lines mark chromosome boundaries (chromosomes 1–22). The horizontal line in the lowest panel is the differ-
ence ¼ 0 line (i.e., IBD proportion in cases ¼ IBD proportion in controls), for comparison.
removing all SNPs with minor-allele frequency of <5%.4

This approach does not utilize tracts of IBD but averages

allelic sharing genome-wide. For direct comparison with

fastIBD proportions, PLINK’s kinship coefficients should

be multiplied by two, but because PLINK’s kinship coeffi-

cients are already significantly higher than the fastIBD

proportions in these data, we did not make this adjust-

ment; it is the relative differences between cohorts and

regions that are of interest here. PLINK’s average estimated

kinship coefficients were 0.0040–0.0053 for any set of indi-

viduals whom we chose to compare, whether we created

subsets by cohort or by geographic region (see Table 1).

Thus, the maximum difference seen between regions or

between cohorts is 30%, compared to 300% for the fastIBD

proportions. The pattern in the PLINK kinship results is

also less consistent; there is excess sharing in Wales for

the 58C cohort only and excess sharing in Scotland for
The America
the other two cohorts only. Thus, although estimated

kinship coefficients hint at the geographic differences

that we found by IBD tract detection, they do not present

as strong or clear a view of these differences. We also

compared our approach to a principal-components

analysis of these data (Figure S8 of theWTCCC’s published

analysis20). In the principal-components analysis, Scot-

land was significantly more of an outlier than was Wales;

London was also an outlier. This is in contrast to our

results, where Wales had slightly higher levels of IBD

sharing than Scotland and London had similar levels of

sharing to the other English regions (results not shown),

but significantly less than that of Wales and Scotland.

Thus, our approach based on IBD tracts reveals different

aspects of population structure than do usual genomic esti-

mates of IBD sharing, such as PLINK’s kinship coefficients

or principal-components analysis. Our approach would be
n Journal of Human Genetics 88, 173–182, February 11, 2011 179



Table 1. Average IBD Sharing within Cohorts in the WTCCC
Bipolar Data

FastIBD PLINK Kinship

Bipolar 58C UKBS Bipolar 58C UKBS

Overall 0.00038 0.00035 0.00034 0.0045 0.0040 0.0045

Within
England

0.00036 0.00035 0.00034 0.0046 0.0041 0.0044

Within
Wales

0.00083 0.00093 0.00111 0.0044 0.0049 0.0043

Within
Scotland

0.00075 0.00068 0.00070 0.0053 0.0040 0.0051
expected to measure recent population dynamics rather

than long-term allelic drift. Regional differences in levels

of recent relationship could reflect population sizes and

the extent of population movement (immigration from

other regions) over the past 5–30 generations.
Detection of Relationships

We created artificial cousin data to investigate the utility of

the fastIBD method for estimating overall genomic IBD

sharing between pairs of individuals. Accurate estimation

of genomic IBD sharing depends not only on detection

of IBD tracts but also on accurate estimation of the

ends of those tracts. To create the data, we simulated

the IBD process for cousins of given degree by simulating

the underlying inheritance vectors, which form a Markov

process along the chromosome with distance measured

in cM, if we assume no crossover interference.23 We then

superimposed this process onto CEU haplotypes from the

HapMap II data, as in the construction of artificial IBD

for the power study above. As for the power study, we

included 1958 birth cohort Illumina 550K genotypes

when building the Beagle LD model. For each pair of indi-

viduals, we recorded the amount of actual IBD and the

amount of estimated IBD. Out of thirty pairs of CEU indi-

viduals considered, two pairs were discarded from the

results because they showed a relatively high degree of

relatedness prior to the addition of artificial IBD (over

20 cM of detected IBD tracts). Thus, each data set included

28 pairs of cousins of given degree. We considered first to

fifth cousins. First cousins are the children of aunts and

uncles, second cousins are the children of first cousins,

and so on. We also analyzed the same pairs of individuals

without any added IBD (these pairs are ‘‘unrelated’’).
Table 2. Percentage of Sample from Each Geographic Region for
WTCCC Bipolar Disorder and Control Cohorts

England Wales Scotland

Bipolar disorder 69.7 20.6 9.7

UK 1958 birth cohort 85.0 5.1 9.9

UK Blood Service 86.5 4.9 8.6
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Figure 6 shows the relationship between actual and esti-

mated IBD. Actual IBD is the amount of constructed IBD

divided by the length of the genome. For distant cousins,

some pairs might have no actual IBD. Estimates of the

IBD proportion were obtained from fastIBD (the total

length of detected IBD tracts was divided by the length

of the genome) and from PLINK (twice the kinship coeffi-

cient obtained from PLINK’s –genome option, after SNPs

with a minor-allele frequency of <5% were removed). Esti-

mates based on IBD tracts detected with fastIBD are much

more accurate than kinship estimates, particularly for the

more distant relationships. For first cousins, IBD propor-

tion is slightly underestimated, which can be remedied

by the use of a less stringent score threshold (e.g., 10�7;

results not shown). For best results over a range of relation-

ships, one could first apply the 10�10 threshold, and if the

estimated IBD proportion is greater than 10%, one could

reanalyze with the less stringent threshold. Estimation of

genomic IBD sharing with fastIBD should in principal be

possible for more distant relatives because there is good

power to detect IBD segments of size 2 cM (corresponding

to the expected length of IBD tracts in 24th cousins, when

such tracts exist). However, distant cousins usually have no

IBD tracts. Also, the background level of relatedness in

populations will subsume specific distant relatedness.

For example, we found IBD at a rate of 3.5 3 10�4 in

the 1958 birth cohort data in analysis of the WTCCC

bipolar study, whereas sixth cousins are expected to share

2 3 10�4 of their genome IBD.

Computation Times

Computation times for a single run of the fastIBD algo-

rithm include the time to phase the data, plus an addi-

tional 10%–20% to detect the IBD tracts. In the results pre-

sented here, we combined results from ten runs of the

fastIBD analysis. Computation is easily parallelized by

run and by chromosome. As an example of computing

time, a single run (one of the ten runs) on chromosome

1 of the WTCCC bipolar analysis, with 4806 individuals

and 37,645 SNPs and for which IBD was estimated for all

possible pairs of individuals across the chromosome, took

approximately 17 hr on a single core of an Intel Xeon

E5620 Quad-Core compute node running at 2.40GHz.

Computing time for 10 runs of fastIBD is similar to the

computing time for PLINK shared-segment detection

for the same number of markers; however, thinning

the marker set before running PLINK reduces the

computing time to a corresponding extent. If the input

data are phased, GERMLINE is between 2 and 3 orders of

magnitude faster than ten runs of fastIBD. Phasing data

with BEAGLE takes time that is similar to one run of

fastIBD, so in practice, the computation time for ten runs

of fastIBD is approximately one order of magnitude larger

than the computation time for GERMLINE when the

phasing step is included. However, the greatly improved

accuracy of fastIBD compensates for the increased

computing time.
11, 2011
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Figure 6. IBD Proportions Estimated against Constructed ‘‘true’’ IBD Proportions for Five Degrees of Cousins and Unrelated Pairs of
Individuals via FastIBD and PLINK Kinship Coefficients
IBD proportion is the proportion of the genome containing an IBD tract, or twice the kinship coefficient.
Discussion

The fastIBD detectionmethod is highly accurate for detect-

ing IBD and yet is sufficiently fast to perform genome-wide

analysis in large samples. The choice of threshold for the

fastIBD score is a compromise between power and false-

discovery rate and can be varied depending on the context.

For the applications we considered, we wanted to have an

approximately zero false-discovery rate, so we used a

threshold of 10�10. When probabilities of IBD are required,

the fastIBD method can be used as a filter to reduce the

amount of computation needed by the original Beagle

IBD method.

The fastIBD method reveals aspects of recent shared

ancestry and population structure that have implications

for statistical analysis. We found that bipolar disorder cases

havemore IBDthancontrols in theWTCCCdata. Thediffer-

ence can be explained by uneven sampling of cases and

controls from different regions in the UK. Imbalances in

rates of IBD tracts have particular relevance for multilocus

analyses that utilize information from genomic segments

larger than the range of LD. For example, population-based

linkage analysis,4 which looks for an excess of IBD tract

sharing in cases compared to controls, will be severely

affectedbymultiple false-positive results across thegenome,

unless adjustment for average rates of IBD tract sharing is

made. Gene-wise analysis of rare variants will also be

affected. Individuals who are identical by descent across

a gene will share the same set of rare variants, and this will
The America
inflate the variance of tests for case-control differences. Vari-

ance correction utilizing detected IBD tracts should be

possibleusingmodifiedversionsof existingmethods forcor-

recting the variance of single-marker association test statis-

tics in thepresenceof relatedness in case-control studies.9–11

The fastIBD method allows for improved estimation of

relationship. Accurate estimates of relationship will be

useful for proper adjustment of association tests in case-

control studies,8 for analysis of quantitative traits,24 for

conservation studies, and for studies of population

dynamics.25 The fastIBD method will also be useful in

other applications, such as population-based linkage in

founder populations26 and improving haplotype phase

inference and imputation.14
Supplemental Data

Supplemental Data include the fastIBD pseudocode and can be

found with this article online at http://www.cell.com/AJHG/.
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